Function	Description
abs(x)	Absolute value of x .
acos(x)	Arccosine of x in range $[0, \pi]$, x in $[-1, 1]$.
	Returns true if every component of x is not equal to 0.
all(x)	
	Returns false otherwise.
any(x)	Returns true if any component of x is not equal to 0.
any(x)	Returns false otherwise.
asin(x)	Arcsine of x in range $[-\pi/2, \pi/2]$; x should be in $[-1, 1]$.
atan(x)	Arctangent of x in range $[-\pi/2, \pi/2]$.
atan2(y , x)	Arctangent of y / x in range $[-\pi, \pi]$.
ceil(x)	Smallest integer not less than x .
	x clamped to the range [a , b] as follows:
clamp(x , a , b)	Returns a if x is less than a .
	Returns b if x is greater than b.
	• Returns x otherwise.
cos(x)	Cosine of x .
cosh(x)	Hyperbolic cosine of x .
	Cross product of vectors A and B ;
cross(A , B)	
	A and B must be three-component vectors.
degrees(x)	Radian-to-degree conversion.
determinant(M)	Determinant of matrix M .
dot(A , B)	Dot product of vectors A and B .
exp(x)	Exponential function e × .
exp2(x)	Exponential function 2 × .
floor(x)	Largest integer not greater than x .
	Remainder of x ${m/}$ y , with the same sign as x .
fmod(x , y)	
	If y is 0, the result is implementation-defined.
frac(x)	Fractional part of x .
	Splits x into a normalized fraction in the interval $[\frac{1}{2}, 1)$,
frexp(x , out exp)	which is returned, and a power of 2, which is stored in exp .
	If x is 0, both parts of the result are 0.
isfinite(x)	Returns true if x is finite.
isinf(x)	Returns true if x is infinite.
isnan(x)	Returns true if x is NaN (Not a Number).

Function	Description
ldexp(x , n)	x x 2 ⁿ .
lerp(a , b , f)	Linear interpolation:
	(1 – f)* a + b * f
	where a and b are matching vector or scalar types. f can be
	either a scalar or a vector of the same type as a and b .
lit(NdotL , NdotH , m)	Computes lighting coefficients for ambient, diffuse, and specular light contributions.
	Expects the NdotL parameter to contain N $ullet$ L and the NdotH parameter to contain N $ullet$ H .
	Returns a four-component vector as follows:
	 The x component of the result vector contains the ambient coefficient, which is always 1.0. The y component contains the diffuse coefficient, which is 0 if (N • L) < 0; otherwise (N • L). The z component contains the specular coefficient, which is 0 if either (N • L) < 0 or (N • H) < 0; (N • H) m otherwise. The w component is 1.0.
	There is no vectorized version of this function.
log(x)	Natural logarithm ln(x) ; x must be greater than 0.
log2(x)	Base 2 logarithm of x ; x must be greater than 0.
log10(x)	Base 10 logarithm of x ; x must be greater than 0.
max(a , b)	Maximum of a and b .
min(a , b)	Minimum of a and b .
modf(x , out ip)	Splits x into integral and fractional parts, each with the same sign as x .
	Stores the integral part in ip and returns the fractional part.
mul(M , N)	$\mathbf{mul}(\mathbf{M}, \mathbf{N}) = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{21} & \mathbf{M}_{31} & \mathbf{M}_{41} \\ \mathbf{M}_{12} & \mathbf{M}_{22} & \mathbf{M}_{32} & \mathbf{M}_{42} \\ \mathbf{M}_{13} & \mathbf{M}_{23} & \mathbf{M}_{33} & \mathbf{M}_{43} \\ \mathbf{M}_{14} & \mathbf{M}_{24} & \mathbf{M}_{34} & \mathbf{M}_{44} \end{bmatrix} \begin{bmatrix} \mathbf{N}_{11} & \mathbf{N}_{21} & \mathbf{N}_{31} \\ \mathbf{N}_{12} & \mathbf{N}_{22} & \mathbf{N}_{32} \\ \mathbf{N}_{13} & \mathbf{N}_{23} & \mathbf{N}_{33} \\ \mathbf{N}_{14} & \mathbf{N}_{24} & \mathbf{M}_{34} & \mathbf{M}_{44} \end{bmatrix}$

Function		Description	
	If M has size A x B , a	and N has size B x C , returns a matrix	
		of size A x C .	
	Product of matrix M a	and column vector v , as shown below:	
		$\begin{bmatrix} \boldsymbol{M}_{11} & \boldsymbol{M}_{21} & \boldsymbol{M}_{31} & \boldsymbol{M}_{41} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 \end{bmatrix}$	
	mul(M, v) =	$oldsymbol{M}_{12}$ $oldsymbol{M}_{22}$ $oldsymbol{M}_{32}$ $oldsymbol{M}_{42}$ $oldsymbol{v}_2$	
mul(M , v)			
		$\begin{bmatrix} \boldsymbol{M}_{14} & \boldsymbol{M}_{24} & \boldsymbol{M}_{34} & \boldsymbol{M}_{44} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_4 \end{bmatrix}$	
	If M is an A x B matrix and v is a B x 1 vector, returns an A x 1 vector.		
	Product of row vect	or v and matrix M , as shown below:	
		$\begin{bmatrix} \boldsymbol{M}_{11} & \boldsymbol{M}_{21} & \boldsymbol{M}_{31} \end{bmatrix}$	
mul(v , M)	$\mathbf{mul}(\mathbf{v}, \mathbf{M}) = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \begin{bmatrix} \mathbf{M}_{12} & \mathbf{M}_{22} & \mathbf{M}_{32} \\ \mathbf{M}_{13} & \mathbf{M}_{23} & \mathbf{M}_{33} \end{bmatrix}$		
		M_{14} M_{24} M_{34}	
	If v is a 1 x A vecto	or and M is an A x B matrix, returns a 1 x B vector.	
noise(x)	Either a one-, two-, depending on the type between 0 and 1, and	or three-dimensional noise function, e of its argument. The returned value is d is always the same for a given input value.	
pow(x , y)		х ^у .	
radians(x)	Degre	e-to-radian conversion.	
round(x)	CI	osest integer to x .	
rsqrt(x)	Reciprocal square r	root of x ; x must be greater than 0.	
saturate(x)	 Clamp	s x to the $[0, 1]$ range.	
sign(x)	1 if x > 0	; -1 if x < 0; 0 otherwise.	
sin(x)		Sine of x .	
	s is set to the sine of	of x , and c is set to the cosine of x .	
sincos(float x , out s , out c)	If both sin(x) and cos(x) are needed, this function is more efficient than calculating each individually		
sinh(x)	H	$\frac{1}{2}$	
	Eor values of x betwe	een min and max returns a smoothly	
<pre>smoothstep(min , max , x)</pre>	varying value that ranges from 0 at $x = min$ to 1		

Function	Description
	at x = max .
	x is clamped to the range [min , max] and then the
	interpolation formula is evaluated:
	-2*((x - min)/(max - min)) ³ +
	3*((x – min)/(max – min)) ²
	0 if x < a ;
step(a , x)	
	1 if x >= a .
cart(y)	Square root of x ;
οφιτη Αγ	x must be greater than 0.
tan(x)	Tangent of x .
tanh(x)	Hyperbolic tangent of x .
	Matrix transpose of matrix M .
transpose(M)	If M is an A x B matrix, the transpose of M is a B x A matrix whose first column is the first row of M , whose second column is the second row of M , whose third column is the third row of M , and so on
Eurotion	
toy1D(complet1D toy	Description
float s)	1D nonprojective texture query
tex1D(sampler1D tex , float s , float dsdx , float dsdy)	1D nonprojective texture query with derivatives
tex1D(sampler1D tex , float2 sz)	1D nonprojective depth compare texture query
tex1D(sampler1D tex , float2 sz , float dsdx , float dsdy)	1D nonprojective depth compare texture query with derivatives
tex1Dproj(sampler1D tex , float2 sq)	1D projective texture query
tex1Dproj(sampler1D tex , float3 szq)	1D projective depth compare texture query
tex2D(sampler2D tex , float2 s)	2D nonprojective texture query
tex2D(sampler2D tex , float2 s , float2 dsdx ,	2D nonprojective texture query with derivatives

Function	Description
float2 dsdy)	
tex2D(sampler2D tex , float3 sz)	2D nonprojective depth compare texture query
tex2D(sampler2D tex , float3 sz , float2 dsdx , float2 dsdy)	2D nonprojective depth compare texture query with derivatives
tex2Dproj(sampler2D tex , float3 sq)	2D projective texture query
tex2Dproj(sampler2D tex , float4 szq)	2D projective depth compare texture query
texRECT(samplerRECT tex , float2 s)	2D nonprojective texture rectangle texture query (OpenGL only)
texRECT(samplerRECT tex , float2 s , float2 dsdx , float2 dsdy)	2D nonprojective texture rectangle texture query with derivatives (OpenGL only)
texRECT(samplerRECT tex , float3 sz)	2D nonprojective texture rectangle depth compare texture query (OpenGL only)
texRECT(samplerRECT tex , float3 sz , float2 dsdx , float2 dsdy)	2D nonprojective depth compare texture query with derivatives (OpenGL only)
texRECTproj(samplerRECT te x , float3 sq)	2D texture rectangle projective texture query (OpenGL only)
texRECTproj(samplerRECT te x , float3 szq)	2D texture rectangle projective depth compare texture query (OpenGL only)
tex3D(sampler3D tex , float3 s)	3D nonprojective texture query
tex3D(sampler3D tex , float3 s , float3 dsdx , float3 dsdy)	3D nonprojective texture query with derivatives
tex3Dproj(sampler3D tex , float4 sq)	3D projective texture query
texCUBE(samplerCUBE tex , float3 s)	Cube map nonprojective texture query
texCUBE(samplerCUBE tex , float3 s , float3 dsdx , float3 dsdy)	Cube map nonprojective texture query with derivatives
texCUBEproj(samplerCUBE t ex , float4 sq)	Cube map projective texture query (ignores q)